计算正在CPU、GPU、应用加速器、互联处理器、边缘计算设备和FPGA的异构组合中延伸,所有这些都需要持久稳定的内存和软件,将这些要素组合成一个完整的解决方案。为了实现大规模生成、存储和分析数据,通往Z级(1Z=1021,十万亿亿级)计算的赛道已然开启。之前,从P级(1015,千万亿级)计算发展到E级(1018,百亿亿级)计算用了超过12年的时间。
10月28日在英特尔On技术创新峰会上,英特尔宣布要与开放生态系统合作,确保开发者拥有优化的工具和软件环境,以加速他们的部署,并预计在五年内也就是2027年实现Z级计算。此外,英特尔在开发者生态系统、工具、技术和开放平台方面的深度投入,正在为人工智能的普及扫清障碍。
从云到边缘的基础设施:结合规模和容量无限扩展的云以及无限延伸的智能边缘
. Ponte Vecchio和oneAPI支持的SiPearl 公司的微处理器: SiPearl正在为欧洲的百亿亿次(E)级超级计算机设计一种微处理器,选择英特尔Ponte Vecchio GPU作为该系统高性能计算(HPC)节点内的HPC加速器。为了打通各种计算环境,SiPearl采用oneAPI作为开放的软件规范,从而帮助开发者提高生产力并优化工作负载性能。
. 下一代英特尔®至强®可扩展处理器(代号为“Sapphire Rapids”)的优化:英特尔正在与开源社区及其庞大的生态系统伙伴合作,使开发者在其下一代处理器上进行开发时更便捷,还将整合多个全新的加速引擎,旨在解决数据中心规模部署模式中的开销问题,同时提高处理器内核的利用率,降低功耗和占地面积成本。
除此之外,英特尔还强调,云应用开发者可以在主要的云服务提供商中使用最新的第三代英特尔®至强®可扩展处理器,包括阿里巴巴、AWS、百度、谷歌、微软、Oracle和腾讯。
人工智能:让人工智能更便捷、更具可扩展性,赋能开发者
英特尔在开发者生态系统、工具、技术和开放平台方面的深度投入,正在为人工智能的普及扫清障碍。英特尔的作用是负责任地扩大人工智能技术的应用规模。英特尔通过在英特尔至强可扩展处理器上对流行的库和框架进行广泛的优化,让人工智能更便捷、更具可扩展性,赋能开发者。英特尔投入开发多种人工智能架构以满足不同的客户需求,采用开放、基于标准的编程模型,让开发者能更轻松地在更多的用例中运行更多的人工智能负载。目前有许多世界领先的研究组织和机构正利用英特尔的人工智能技术来解决复杂的任务,今日的发布恰好印证了这点:
. 阿贡国家实验室的“极光”(Aurora)超级计算机提供每秒两百亿亿次的浮点运算性能:该款联合设计的“极光”(Aurora)超级计算机,将搭载下一代英特尔至强可扩展处理器(代号为“Sapphire Rapids”)和英特尔下一代GPU(代号为“Ponte Vecchio”),提供每秒超过两百亿亿次的双精度峰值计算性能。“极光”(Aurora)为高性能计算、人工智能/机器学习和大数据分析工作负载而设计。阿贡国家实验室是美国能源部的一个国家实验室,也是致力于提供未来百亿亿次(E级)计算能力的前沿机构。
. 英特尔人工智能技术赋能阿里巴巴推荐引擎:英特尔与阿里巴巴合作开发了端到端的工具包DeepRec,以促进推荐系统的深度学习训练和部署,这一工作负载会耗费所有数据中心和云端人工智能生命周期的很大一部分,并有不同的计算、内存、带宽和网络需求。DeepRec开发者能更轻松地加载和更新模型,处理嵌入层,利用现有模型库,以及部署具有数万亿个样本的极大规模推荐服务。
. 针对英特尔至强可扩展处理器优化的AI工具包:英特尔优化的AI工具包为数据科学家提供了更高性能和生产力,方便快捷。英特尔已经与开源社区,以及亚马逊、百度、Facebook、谷歌和微软进行合作,以确保支持最流行的数据科学软件,优化了在英特尔硬件上的运行,这些软件包括Pandas、scikit-learn、MXNet、PaddlePaddle、PyTorch、TensorFlow、ONNX Runtime等。
. 加速下一代英特尔至强可扩展处理器的AI性能:英特尔计划通过下一代英特尔至强可扩展处理器(“Sapphire Rapids”),实现人工智能总性能增益与上一代相比提高30倍。这些性能提升是通过广泛的软件优化和即将推出的内置于处理器的英特尔高级矩阵扩展(AMX)引擎实现,在不需要独立GPU的情况下,可执行更多的AI用例。
英特尔公司CEO帕特·基辛格说道:“我相信开源会使所有最终用户、开发者、合作伙伴和企业获得成功,因为它能够激发全新的研发热情。我相信一个强大、开放的生态系统将无往不胜。”
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。